【摘要】为了充分利用遥感图像中丰富的细节信息和上下文信息,提高图像语义分割精度,提出一种深度融合网结合条件随机场模型的遥感图像语义分割方法。方法在全卷积神经网络框架中增加反卷积融合结构,搭建深度融合DFN (Deep Fusion Networks)网络,通过深层网络自动获取多尺度特征,避免人工设计和选择特征,提高模型的泛化能力;同时借助反卷积融合结构,利用多尺度信息,将浅层细节信息和深层语义信息相融合,提高模型的处理精度。由全连接条件随机场引入空间上下文信息,更好地定位边界,得到最终的语义分割结果。在遥感图像数据集上的实验结果显示:(1)随着不同尺度细节信息的融入,结果的边缘轮廓越精确、接近标签图像;(2)增加了空间上下文信息后,语义分割结果边缘更细化、准确,精度更高。实验表明,该方法可以有效提高遥感图像语义分割的精度,改善结果的过平滑现象。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《华侨大学学报(哲学社会科学版)》 2015-07-07
《旅游世界》 2015-07-06
《南京体育学院学报(社会科学版)》 2015-07-01
《中外医疗》 2015-07-06
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点